Extremal values and bounds for the zero forcing number
نویسندگان
چکیده
منابع مشابه
On the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملZero forcing number of graphs
A subset S of initially infected vertices of a graph G is called forcing if we can infect the entire graph by iteratively applying the following process. At each step, any infected vertex which has a unique uninfected neighbour, infects this neighbour. The forcing number of G is the minimum cardinality of a forcing set in G. In the present paper, we study the forcing number of various classes o...
متن کاملBounds for the Zero-Forcing Number of Graphs with Large Girth
We investigate the zero-forcing number for triangle-free graphs. We improve upon the trivial bound, δ ≤ Z(G) where δ is the minimum degree, in the triangle-free case. In particular, we show that 2δ− 2 ≤ Z(G) for graphs with girth of at least 5, and this can be further improved when G has a small cut set. Lastly, we make a conjecture that the lower bound for Z(G) increases as a function of the g...
متن کاملThe Zero Forcing Number of Circulant Graphs
The zero forcing number of a graph G is the cardinality of the smallest subset of the vertices of G that forces the entire graph using a color change rule. This paper presents some basic properties of circulant graphs and later investigates zero forcing numbers of circulant graphs of the form C[n, {s, t}], while also giving attention to propagation time for specific zero forcing sets.
متن کاملMinimum rank and zero forcing number for butterfly networks
The minimum rank of a simple graph G is the smallest possible rank over all symmetric real matrices A whose nonzero off-diagonal entries correspond to the edges of G. Using the zero forcing number, we prove that the minimum rank of the r-th butterfly network is 1 9 [ (3r + 1)2r+1 − 2(−1)r ] and that this is equal to the rank of its adjacency matrix.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2016
ISSN: 0166-218X
DOI: 10.1016/j.dam.2016.06.004